
The Remote Agent Executive:

Capabilities to Support Integrated Robotic Agents

Barney Pellx Gregory A. Doraisy Christian Plaunty Richard Washingtony

fpell,gadorais,plaunt,richwg@ptolemy.arc.nasa.gov
NASA Ames Research Center, Mail Stop 269-2

Mo�ett Field, CA 94035-1000

July 6, 1998

Abstract

The Remote Agent (RA) integrates a broad spectrum of robotic activities, including planning, schedul-

ing, execution, monitoring, failure detection, diagnosis, and recovery. The RA Executive (EXEC) can

be viewed as the core of the agent. EXEC enables software developers to think about the robot at a

higher level; it also supports the reuse of knowledge and code across multiple robot applications. EXEC's

capabilities include a high-level procedural action-de�nition language, services for resource management

and con�guration management, support for executing exible closed-loop plans and command sequences,

support for replanning, and a framework for specifying fault responses including safe modes and responses

to plan failures.

We believe that these capabilities are required for most autonomous agents, and that executives

and execution capabilities will become more essential as we attempt to develop autonomous agents of

increasing capability. Moreover, we deem modularity, variable autonomy, robustness, and support for

tools and testing to be general architectural properties necessary for design, deployment, and operation of

executives within a complex mission. To this end, we are remodularizing the executive by providing each

capability as a separate component so that the individual capabilities can be standardized and shared

across di�erent agent architectures.

1 Introduction

An executive coordinates the runtime activity among a set of modules involved in a control system. Such

coordination is necessary to synchronize coordinated activities, avoid resource conicts, enforce operational

constraints, and ensure safety in the presence of failures.

The capability level of an executive has direct impact on the design and complexity of the entire system.

If there is no executive in the system, the individual modules must be commanded separately. Also, all the

coordination requirements must be performed open-loop or the modules must know about each other and

coordinate themselves directly. This increases the complexity of both the external commanding system and

the functional modules themselves.

Most deployed spacecraft control systems today have a simple sequencing engine on-board, which accepts

a timed sequence of commands and issues those commands to the functional modules. The current systems

do not support context-sensitive or conditional activity, or decomposition of high-level activities into lower-

level commands. One result is that the duration of activities must be determined open-loop by the ground

system. These limitations cause signi�cant complexity in the ground system, as it must reason about every

xResearch Institute for Advanced Computer Science
yCaelum Research Corporation

1



detail and every interaction of the control system. Even for ground systems that employ automated planners

to ease the burden, the level of detail required for planning down to the lowest-level activities makes the

planning problem computationally di�cult. The low-level detail also makes the knowledge encoded and used

by the ground system (including the planner) cumbersome to extract and validate, and error prone.

Moreover, since current executives do not understand the causal structure of the sequences they execute

and do not perform context-sensitive activities, the resulting behavior is brittle. The sequence tends to break

if anything goes wrong, causing loss of mission goals and missed opportunities. Missions that cannot a�ord

such losses at critical periods wind up pushing further complexities into the functional module software, and

onto the fault-protection software. For example, in the \sequence rollback" approach, the functional modules

that receive the low-level commands must be able to execute the commands di�erently depending on whether

they succeeded or failed last time, so that the same sequence can be re-used in the case of failures. This

approach leads to software that is almost incomprehensible, unmaintainable, and certainly not reusable.

In this paper, we describe execution capabilities and architectural properties that are important for

developing, deploying, and operating autonomous spacecraft. We believe that these capabilities are required

for most autonomous agents, and that executives and execution capabilities will become more essential as

we attempt to develop autonomous agents of increasing capability.

1.1 The Remote Agent

To address the limitations of spacecraft control systems, we have developed the Remote Agent (RA). RA is

designed to control spacecraft autonomously for extended periods of time, and is being demonstrated on the

Deep Space One spacecraft (DS-1) scheduled to launch October, 1998 [Bernard et al., 1998]. A prototype of

RA was also tested on a complex simulated Saturn Orbit Insertion (SOI) scenario for the Cassini spacecraft
[Pell et al., 1998a]. However, RA is not limited to controlling spacecraft. RA is a general agent architecture

that is applicable to a wide variety of applications; we are currently applying it to communication satellites

and rovers, with possible future applications to life support systems, autonomous propellant manufacturing,

and space and earth based interferometers.

The Remote Agent itself comprises four components: a Mission Manager (MM), a Planner/Scheduler

(PS), a Smart Executive (EXEC), and a Mode Identi�cation and Recon�guration component (MIR) [Pell et

al., 1998a, Muscettola et al., 1998b]. The architecture is shown in Figure 1. This paper focuses on EXEC.

Mission Manager (MM): MM is special module of the planner that formulates shorter-term planning

problems based on a long-range mission pro�le. The mission pro�le, which is provided at launch, contains

a list of all nominal goals to be achieved during the mission. MM determines the goals that need to be

achieved in the next scheduling horizon (typically 2 weeks long), extracts them from the mission pro�le and

combines them with the initial (or projected) spacecraft state as determined by the executive. The result

is a speci�c planning problem that, once solved, yields detailed execution commands. This decomposition

into long-range mission planning and shorter-term detailed planning enables RA to undertake an extended

diverse mission with minimal human intervention.

Planner/Scheduler (PS): PS is an integrated planner and scheduler. In our architecture, PS is activated

as a \batch process" that terminates after a new schedule has been generated. It takes as input a plan-request

and produces as output a exible, concurrent temporal plan. A plan-request describes the current state of

execution, including activities still scheduled for the future, as well the goals for the next plan execution

period as formulated by MM.

PS constructs plans using a knowledge base expressing domain constraints and heuristics. Other on-

board software systems, called planning experts, participate in the planning process by requesting new goals

or answering questions asked by the PS. For example in the DS-1 RA, the navigation system planning expert

requests a set of pictures it will need to update its understanding of the current spacecraft trajectory, and

the attitude planning expert answers questions about estimated duration of turns and resulting resource

consumption, given assumptions expressed by the planner about a hypothetical planning context.

2



Mission 
Manager

Smart 
Executive

Planner 
Scheduler

Mode ID and 
Reconfig

Planning Experts

Monitors

Real-Time 
Control

Ground System

Flight Hardware

Remote Agent

Figure 1: Remote Agent architecture

An output plan constrains the activity of each spacecraft subsystem over the duration of the plan, but

leaves exibility for details to be resolved during execution. The plan also contains activities and information

required to monitor the progress of the plan as it is executed. In addition, the plan contains an explicit

activity to initiate another round of planning.

Smart Executive (EXEC): EXEC is a reactive, plan-execution system with responsibilities for coor-

dinating execution-time activities, including resource management, action de�nition, fault recovery, and

con�guration management. These will be discussed in more detail below.

Mode Identi�cation and Recon�guration (MIR): MIR is a discrete, model-based controller that

uses a single, declarative model of the spacecraft for both mode identi�cation and recon�guration. MIR is

based on Livingstone as described in [Williams and Nayak, 1996]. Like EXEC, MIR runs as a concurrent

reactive process. MIR itself contains two components, one for Mode Identi�cation (MI) and one for Mode

Recon�guration (MR). MI is responsible for providing a level of abstraction to the executive that enables

EXEC to reason about spacecraft state in terms of a set of component modes rather than a set of low-level

sensor readings. MR serves as a recovery expert to EXEC, taking as input a recovery request, and returning

a sequence of operations that, when executed starting in the current state, will move the executive into a

state satisfying the properties required for successful execution of the failed activity.

1.2 The Remote Agent Executive

EXEC is event-driven and goal-oriented and forms the core of RA. It provides a language and a framework

in which software designers can express how planning, control, diagnosis, and recon�guration capabilities are

to be integrated into an autonomous system. It can request and execute plans involving concurrent activities

that may be interdependent, where the success, timing, and outcomes of these activities may be uncertain.

It provides a language for expressing goal-decompositions and resource interactions. When interpreting this

language at run time, the executive automates the decomposition of goals into smaller activities that can

be executed concurrently. This automates aspects of the labor-intensive sequencing function in spacecraft

operations and raises the level of abstraction at which the ground system or on-board planner must reason.

3



Top-Level Loop

Plan Request 
Generator

Plan Runner
Fault-Protection, 
Standby Event 

Responses

Memory 
Database

Domain 
Standby 

Definitions

Planning

Mode 
Identification

Real-Time 
Control

Recovery 
System

Domain Task 
Definitions

Generic 
Config. 

Procedures

Domain 
Device 

Definitions 
& Models

Domain 
Resource 

Definitions 
& Models

Resource Manager

Configuration Manager

Sequencer

Domain Specific Modules

Task Decomposition Modules

Config & 
Resource 
Recovery

EXEC

Figure 2: The architecture of the Smart Executive (EXEC)

The framework also supports a close integration between activity decomposition and fault responses. This

leads to more robust execution, avoids loss of mission objectives, improves mission reliability and resource

utilization, and simpli�es the design of the entire software system.

The architecture of EXEC is illustrated in �gure 2 and is an expansion of the Smart Executive node

shown in �gure 1. Note that the domain de�nitions and models are separate from the EXEC components

allowing users of EXEC to tailor it for a variety of domains without having to modify any of the EXEC

components. Also note that each EXEC component can read and write to the memory database as required.

The main EXEC components are discussed in detail in the next section.

As an integrating technology, an executive enables each software component to be expressed indepen-

dently, but controls the interactions among those components so that the overall activity of the system

achieves global constraints as dictated by a high-level plan. This increase in modular software design enables

reduced development and integration costs and increased software reuse both within and across missions.

This capability also enables a new generation of adaptive controllers with multiple control modes. A smart

executive switches control modes of these controllers based on feedback from the environment.

Our understanding of the role and requirements of executive capabilities has evolved since we began our

prototyping e�ort on the SOI scenario. That work built on executive components the Cassini engineers had

4



developed, including a con�guration manager, resource manager, and fault-protection framework [Brown et

al., 1995] and extended these capabilities to support an on-board planner and model-based diagnosis and

repair system. On DS-1, we moved from a prototype to an operational ight software system that was part of

a much larger project. This experience provided lessons about additional requirements that were critical to

successful deployment in an actual mission [Aljabri et al., 1998]. Our current work revolves around extending

the capabilities of the individual components and addressing critical features in response to the lessons from

our ight experience.

The rest of this paper is structured as follows. The next section describes EXEC components and

capabilities we think are general to most autonomous control systems. This is followed by a section where

we present general architectural properties necessary for design, deployment, and operation within a complex

mission. We then discuss related work and future directions.

2 EXEC Components

EXEC has the following capabilities which we consider useful for executives in general:

� Flexible plan execution

� Con�guration management

� Resource management

� Action-de�nition language

� System-level fault-protection support

While these capabilities are tightly coupled within EXEC, we will describe each as a separate component

with independent functionality. We are currently redesigning EXEC to reect this modular architecture, as

discussed later. RA components that implement these capabilities are illustrated in Figure 2.

2.1 Flexible Plan Execution

One major capability of EXEC is to support execution of plans generated by PS. Several features of plan

execution are important in our applications.

An important set of features concerns the plan representation itself. PS generates exible, concurrent,

temporal plans [Pell et al., 1998a, Muscettola et al., 1995]. This is important for control systems in which

many subsystems conduct concurrent activity, and in which execution must be robust in the face of un-

certainty. Despite the exibility in the plans, it is important that EXEC execute the plans correctly and

e�ciently. EXEC's own processing of the plan introduces some latency during execution. This introduces

issues of temporal granularity and propagation times into the system design [Muscettola et al., 1998a].

An illustration of a simple plan is shown in �gure 3. Each horizontal bar represents a separate thread

of activity. Each thread is segmented into a sequence of activities that are executed from left to right. The

plan contains constraints that coordinate the execution of activities on di�erent threads. For example, the

imaging activity on the Imaging thread shown in the �gure has a contained-by constraint with reference to

the point(b) activity on the Attitude thread. This means that the imaging activity cannot start until the

point(b) activity has started and the imaging activity must end before the point(b) activity ends.

Planning can be an infrequent activity due to resource and informational limitations. Hence, EXEC

supports the execution of infrequently-generated plans [Pell et al., 1997]. To avoid interrupting activities at

the boundary between execution of one plan and the next, EXEC supports smooth plan transitions, in which

the same activities can be referred to between subsequent plans. Thus, a new plan can be smoothly merged

into the previous execution context.

EXEC supports concurrent planning and execution, in which a new plan can be generated while a previous

plan is executing [Pell et al., 1997]. The planning process itself is represented as part of the plan being

5



Cruise_to_Target(t)

Idle

Dead Reckoning

Imaging

Point(a)

Planning

Orbit Calc Idle

Idle Idle

Point(b)Turn(a,b) Turn(b,a)

Goal

Planning

Nav

Imaging

Attitude

contained_by

before

before

Figure 3: Planning as a constrained execution activity.

executed, and thus the new plan will be generated at a time constrained by other events in the plan. For

example, in the plan shown in �gure 3, the planning activity cannot start until after the orbit calculation

activity has completed.

Planning during execution requires the planner to make use of current execution information. Also,

EXEC must track the assumptions under which the new plan is being generated, and abort the planning

process if those assumptions become invalid before the new plan is executed.

Monitoring the execution and aborting (under conditions of failure or by command) is also an important

requirement. When the execution of a plan is aborted, EXEC terminates activities executing under the

current plan (including any replanning activity currently underway) and invokes a procedure to establish a

stable con�guration, called a standby mode, from which a new round of planning can be initiated [Pell et al.,

1997].

EXEC supports a mechanism by which users can switch between closed-loop plan execution, in which

EXEC requests plans based on current state information, and open-loop execution, in which EXEC runs

plans possibly generated by mission operators and sent to the spacecraft [Pell et al., 1998c]. For this feature

to be useful, it is important to support smooth plan transitions in the open-loop context as well.

In addition to the ability to execute high-level plans, it is also important to support the functionality of

traditional sequencers. While such sequences are less exible (and thus less robust in the face of uncertainty),

they can be easier to analyze and predict, and hence more comfortable for mission operators. EXEC supports

the ability to run traditional sequences, and also to embed sequences within exible plans. This enables a

form of adjustable autonomy (discussed later) in which operators can choose to control some aspects of

operation via high-level goals managed by the agent but control other aspects by low-level commanding.

Even when EXEC is running sequences, it gives operators access to a rich language in which they can

express time-driven, event-driven, and context-sensitive relationships between activities.

2.2 Services for Con�guration Management

A challenge in designing software for a complex system, such as a spacecraft, is that the system may be

in a wide variety of con�gurations. The physical components of a spacecraft, their topology, and the state

of each component de�ne a spacecraft con�guration. At hardware design time, devices may be added or

removed from the system (for example, a new star tracker), and details of individual hardware components

may change. At run time, devices may be turned on or turned o�, healthy or malfunctioning, and in a

number of possible operational states.

EXEC's con�guration manager (CM) insulates the software for each of the many activities in a complex

system from the details of the con�gurations that those activities require. If the con�guration details change,

whether at run time or design time, the activity code can remain unchanged.

6



CMmaps con�guration requirements to code that establishes con�gurations satisfying those requirements.

The code that establishes con�gurations must reason about inter-dependencies among devices, and it must

adapt to hardware changes. To simplify development of such code, we have designed a set of generic

con�guration management procedures, in which the user provides hardware details (including connectivity

diagrams) and instantiates the generic procedures.

Once a con�guration satisfying the required properties is established, CM tracks this con�guration and

signals an error if these properties are violated. In such failure conditions, CM interacts with the fault-

protection capabilities to establish a potentially new con�guration so that the code requiring it can continue

to operate correctly.

In EXEC, individual device knowledge is implemented based on a library of generic device management

routines. Devices and classes are formalized using generic descriptions. Individual devices, switches, etc.,

are then modeled as instances of these classes. Consider the following example:

(define-device-class :camera

:power-function #'fsc-power-request

:talk-function #'camera-talk-msg)

(define-device :camera A :camera

:powered-thru :power bus 1

:switched-thru :fsc camera sw1

:ready-state ((:health state :ok)

(:power state :on)))

Based on these device idioms, EXEC has generic procedures de�ned for device con�guration and man-

agement. With a single construct, CM will select a device of a given class, achieve its ready-state, and then

lock the properties of the ready-state and maintain them during the execution of an activity. Note that

achieving a state of one device may require readying other devices it depends on, recursively.

Based on the camera de�nition above, the construct

(with-selected-device :camera

(take-pictures))

would select a camera (say camera A), achieve its ready-state of being powered on and healthy, and then take

pictures within a context that ensures that the health and power of the camera are maintained throughout

picture taking.

2.3 Services for Resource Management

Scarce resources are a fact of life on spacecraft. On-board processes contend for a limited number of devices.

Shared resources, such as energy and data storage, are subject to hard (and relatively severe) limits, as well

as environmental inuences (such as solar exposure for battery charging) that change these limits over time.

Currently, spacecraft control sequences use worst-case estimates of resource utilization. However, the

uncertainty in the environment and its e�ect on the true resource utilization can make estimates inaccurate.

For example, in the rover domain, navigation over a �xed distance can use widely varying amounts of energy

depending on the terrain the temperature. A loose worst-case estimate can lead to under-utilization of the

spacecraft; an underestimate can lead to aborts in plan execution.

A spacecraft resource manager must be able to manage and coordinate utilization of these scare resources.

First, it must provide a basic locking mechanism that maintains devices in particular states throughout the

time interval for which the device state is needed by a process. Second, it must handle continuous and

varying resources by responding to immediate resource requests from tasks, tracking resources over time,

and allowing resources to be reserved for future tasks.

7



A

B

C

Z

10

ON

0

OFF
.

.

.

.

.

Interrupt
Task

Maintain Properties
Daemon

Subscribe

Update

Database

Property LocksTasks

Spacecraft

Commands
Control

Monitors
Achieve
Property

Event
Lock

Event

Figure 4: Procedural Executive Resource Manager

2.3.1 Property locks

The executive manages a set of concurrent control tasks, as shown in Figure 4. Each control task requires a

set of resources, or properties, to be established and maintained over some period of time. For example, the

activity of taking pictures with a camera requires that the camera is on and functional. If some other activity

requires the camera to be o�, these two activities compete for the resource of controlling the camera's power

state. The executive must achieve, maintain, and monitor properties required for each task, and resolve task

resource conicts.

A task is represented at run-time by an independent execution thread. Threads communicate with other

threads directly via signals, or indirectly via changes to a database. Receipt of a signal or noti�cation of a

change to the database are examples of events.

Each activity uses the (with-maintained-properties) construct to declare those properties that it

requires maintained over its interval of execution. In this way, Exec understands the constraints which

support the entire current execution context. When a property is achieved and reserved for a task, it is said

to be locked until the task relinquishes it, so that other tasks will not be permitted to violate that property.

Of course, the locks reect properties true in the current state, and sometimes these properties can change

despite the best e�orts of the software system to maintain them. For example, switches on a spacecraft

sometimes change state accidentally. In this case, we describe the properties as lost or violated, and the tasks

requiring them as unsupported.1

In the event that some property is lost or otherwise unachievable without the help of a recovery expert,

Exec suspends the unsupported threads, formulates a query based on the active constraints, and uses the

automatic-recoveries thread to send the query o� to the recovery expert (in this case, MIR).

When the recovery expert returns an action, Exec performs the action and then re-activates any suspended

threads which may now be supported. The threads then attempt to re-establish their maintained conditions.

Note that most Exec procedures count the number of times they have retried a particular approach, and try

something else or give up if this retry counter exceeds a threshold.

1Note that property locks can serve a role similar to typical locks in multi-threaded systems, such as semaphores and

mutexes. However, there is a major di�erence since these property locks are database-relative, and can hence be \taken" by the

outside world changing. Note also that naive use of property locks can result in deadlock, just as occurs with standard locks in

multi-threaded operating systems.

8



The automatic-recoveries thread remains in action forever, so unsatis�ed constraints following execu-

tion of some recovery step will lead to a new recovery request.

We now elaborate on some of the key constructs we have developed within the procedural executive that

support the behavior described above.

Achieving properties

(achieve <property>)

� If this is the �rst thread to request the property, then execute an achievement method for the property.

� When achievement is successful, signal other waiting threads.

� If some other thread is already achieving the property, then wait for it to �nish.

� If the property is inconsistent with a current lock, either wait for lock to be released or fail immediately

(based on preferences set by the invoking thread).

Maintained Properties

(with-maintained-properties <properties> body)

� If properties are all currently true, body is executed.

� If properties are false, the executive tries to achieve them �rst.

� Once they are true, the executive locks the properties and executes body.

� If the properties become false during execution of body, signal this loss and let the enclosing context

of body choose the response.

2.3.2 Aggregate Resources

The EXEC resource manager is being extended to manage more complex resource requirements. The re-

sources are not all-or-none, as in the current resource manager, but allow partial resource allocation (as with

energy or data storage). In addition, the resources may be reserved for future use, so that future tasks may

be scheduled.

An example of aggregate resources can be seen in Figure 5. The resource availability is represented as a

curve, representing for example solar ux over the day. Individual tasks will require resources over intervals

of time, shown by the blocks under the curve in the �gure. When the resource usage exceeds the resource

limits, either now or at some point in the future, the resource manager needs to notify the tasks that there

is a conict and that some amount of resource needs to be freed.

The primary functions of the resource manager being developed are to detect changes in resource avail-

ability, adapt the resource allocation to respond to the resource changes, and manage resource requests and

queries from tasks. The resource availability may change for a variety of reasons: degraded components

(battery use), environmentally a�ected performance (solar cells), or other causes. The resource manager will

have multiple strategies for adapting to resource changes and conicts. These strategies will be selectable re-

motely and include task abortion (the simplest and most severe), shedding of low-priority tasks, and a novel

idea of temporarily borrowing resources from other tasks. Examples of applications of aggregate resource

management tasks are telecommunications quality of service guarantees and rover power and data storage.

9



T
im

e

Resource

F
ig
u
re

5
:
A
g
g
reg

a
te

reso
u
rce

a
va
ila
b
ility

a
n
d
u
sa
g
e.

2
.4

H
ig
h
-L
e
v
e
l
P
r
o
c
e
d
u
r
a
l
A
c
tio

n
-D

e
�
n
itio

n
L
a
n
g
u
a
g
e

S
p
a
cecra

ft
co
n
tro

l
so
ftw

a
re
sh
o
u
ld

p
ro
v
id
e
a
co
n
cise

w
a
y
o
f
sp
ecify

in
g
th
e
co
n
tro

l
a
n
d
b
eh
a
v
io
r
o
f
th
e
va
rio

u
s

sp
a
cecra

ft
d
ev
ices

a
n
d
th
e
co
re

co
m
p
o
n
en
ts
o
f
E
X
E
C
itself,

a
n
d
in
su
la
te

th
e
sy
stem

d
ev
elo

p
er

fro
m

lo
w
-lev

el

in
tera

ctio
n
s
w
ith

h
a
rd
w
a
re

a
n
d
so
ftw

a
re.

E
X
E
C

is
b
u
ilt

u
p
o
n
a
p
o
w
erfu

l,
ex
ten

sib
le,

h
ig
h
-lev

el
la
n
g
u
a
g
e,

ca
lled

E
x
ecu

tio
n
S
u
p
p
o
rt

L
a
n
g
u
a
g
e

(E
S
L
)
[G
a
t,

1
9
9
6
].

T
h
is

la
n
g
u
a
g
e
w
a
s
d
ev
elo

p
ed

in
resp

o
n
se

to
th
e
n
eed

s
o
f
d
ev
elo

p
in
g
E
X
E
C

a
n
d
th
e

sy
stem

s
it
co
n
tro

ls.
E
S
L
in
clu

d
es

th
e
fo
llo
w
in
g
fea

tu
res:

�
A
to
p
-lev

el
in
terp

reter
(sh

ell)

�
C
o
n
stru

cts
fo
r
m
a
n
a
g
in
g
ta
sk

n
etw

o
rk
s
a
n
d
co
n
cu
rren

t
th
rea

d
s
o
f
ex
ecu

tio
n

�
C
o
n
d
itio

n
a
l
ta
sk

ex
ecu

tio
n

�
R
o
b
u
st
ex
cep

tio
n
h
a
n
d
lin

g
w
ith

co
n
stru

cts
fo
r
co
n
d
itio

n
m
o
n
ito

rin
g
a
n
d
m
a
in
ten

a
n
ce,

m
u
ltip

le
reco

v
-

eries,
a
n
d
clea

n
u
p
s

�
E
v
en
t
sig

n
a
lin

g
,
resp

o
n
se,

a
n
d
ca
ll-b

a
ck
s

�
A
d
ed
u
ctiv

e
m
em

o
ry

d
a
ta
b
a
se

�
C
o
n
stru

cts
fo
r
rela

tiv
e
a
n
d
a
b
so
lu
te

tim
in
g

A
la
n
g
u
a
g
e
fea

tu
re

w
e
fo
u
n
d
im

p
o
rta

n
t
is

la
n
g
u
a
g
e
e
x
te
n
sio

n
.
T
h
is
en
a
b
les

u
s
to

d
e�
n
e
n
ew

co
n
stru

cts

w
h
ich

en
ca
p
su
la
te

p
ro
ced

u
res

w
e
u
sed

rep
ea
ted

ly
a
n
d
to

en
fo
rce

p
ro
g
ra
m
m
in
g
co
n
v
en
tio

n
s
a
n
d
a
rch

itectu
ra
l

co
n
stra

in
ts.

S
ee

th
e
ca
m
era

d
ev
ice

d
e�
n
itio

n
a
b
o
v
e
fo
r
a
n
ex
a
m
p
le
o
f
su
ch

a
la
n
g
u
a
g
e
ex
ten

sio
n
.
T
h
e
la
ck

o
f
th
is
fea

tu
re

w
a
s
o
n
e
o
f
sev

era
l
rea

so
n
s
th
a
t
m
o
tiva

ted
u
s
to

d
ev
elo

p
E
S
L
a
s
a
su
ccesso

r
to

R
A
P
S
[F
irb

y,

1
9
7
8
],
w
h
ich

w
e
u
sed

d
u
rin

g
o
u
r
p
ro
to
ty
p
e
e�
o
rt

[P
ell

e
t
a
l.,

1
9
9
8
a
].

1
0



2.5 System-Level Fault Protection

Fault protection enables a system to recover from anomalous conditions such as obstacles to navigation or

device malfunctions. Spacecraft engineers distinguish component-level fault protection, which tries to restore

functionality of an individual subsystem, from system-level fault protection. In the latter, the overall system

must be protected even if the component that failed is not identi�ed, isolated, or recovered.

Writing fault-protection software is a signi�cant part of a spacecraft software engineering e�ort because

there are many subsystems and interactions to consider. To handle fault protection across subsystems,

many constructs are needed. These include events and responses, timers, the ability to achieve standby

mode, property tracking, constrained recoveries, and waiting for con�rmation before taking action.

Our executive fault-protection component provides a robust layer for fault monitoring, detection and

recovery. EXEC's fault-protection system provides:

� An event-response architecture, which has multiple threads of control listening for events (e.g., under-

voltage trips or extended loss of communication), which execute well-de�ned responses speci�ed in a

rich language with hierarchical exception handling, context-dependent methods, etc.

� Built-in constructs that support reex reactions to fault conditions

� An ability to draw on external expertise for monitoring, diagnosis, and recovery to handle more complex

conditions and recovery plans [Pell et al., 1998b]

� A high-level control loop that can abort a plan and re-plan, or robustly achieve a context-appropriate

standby mode

� A fail-operational capability to restore activities that fail without breaking plans, when possible. This

uses recovery methods, and can draw on the property-lock manager to help formulate constraints for

use by external recovery planners

� A reusable framework for structuring system-level fault protection in the spacecraft domain, with pre-

de�ned threads for the major subsystems (power, thermal control, communications, attitude control,

etc.)

EXEC performs similar functions to a traditional operating system. The main di�erence is that when

unexpected contingencies occur, a traditional operating system can only issue a report and abort the o�ending

process, relying on user intervention to recover from the problem. EXEC must be able to take corrective

action automatically, for example in order to meet a tight orbital insertion window.

In conjunction with an external model-based fault-diagnosis and recovery system, EXEC provides proce-

dural constructs to control the deductive component in a \hybrid precedural/decuctive" manner [Pell et al.,

1998b]. The integrated capability enables designers to code knowledge using a combination of procedures

and declarative models suitable to the challenges of complex systems control.

3 General Architectural Properties

This section discusses the general architectural properties necessary for design, deployment, and operation

of an executive within a complex mission. Important properties include:

� Modular architecture

� Adjustable autonomy

� Robustness

� Tools for design, analysis, visualization, communication and logging

� Component testing

11



3.1 Modular Architecture

One major change underway to EXEC is to modularize it by separating the individual functions, while

maintaining and enhancing its functionality. Advantages of a modular architecture include the following:

� The roles and relationships of the components are more cleanly de�ned. This makes it easier to

understand the behavior and interface of each executive capability, and at the implementation level

discourages subtle interactions that could otherwise occur.

� The individual components may be chosen in a plug-and-play manner to build up a customized archi-

tecture for a given application domain. This reduces the overhead when an application needs only one

component, e.g., the resource manager. Plug-and-play also creates an open architecture so that other

developers can produce systems satisfying the same capabilities as EXEC components.

� A system that uses executive capabilities no longer needs to be within the framework and language of

the executive. When each capability is separated and has a clean interface, a system designer can use

the capability with calls, written in any language, to the executive through the interface.

� Once each component capability is better understood, the opportunities for extending and improving

the component are more clearly evident. Thus, the overall architecture can be upgraded in a more

coherent and more useful fashion.

� Tools for the executive can be specialized to the individual components. This will enhance the e�ec-

tiveness of each component, as it will allow better formal analysis, visualization, testing, and debugging

of each component capability.

Our new modular executive under development, called the Intelligent Deployable Executive Architecture

(IDEA), will overcome a major barrier to adoption of executive technologies within conservative space

missions.

3.2 Adjustable Autonomy

An important executive property is to be able to share control of complex systems with people who interact

with them. The goal of adjustable autonomy is to minimize the necessity but maximize the capability of

human interaction with the system being controlled.

We distinguish two types of adjustable autonomy. Phase-variable autonomy permits the level of autonomy

to vary over time. Activity-variable autonomy permits di�erent levels of autonomy for di�erent activities.

For example, a user may which to perform one activity by tele-operation while the system performs other

activities autonomously. In addition, changing the level of autonomy of a robotic agent (either phase-

variable or activity-variable) may be initiated by a user or by the agent itself. For example, the executive

may recognize when the system is in a situation which would bene�t from human assistance and adjust itself

to the appropriate level of autonomy. These forms of adjustable autonomy are discussed further in [Pell et

al., 1998c].

For spacecraft, adjustable autonomy increases the con�dence of managers and operators responsible for

multi-million dollar missions to use an autonomous executive. It also enables operators to deliver new

autonomous capability incrementally over the course of a mission. Moreover, operators may desire fully

autonomous operation during some phases (like cruising to a target), but little or no autonomous operation

during others (like encountering a target). The ability to draw on human expertise, especially in anomalous

conditions, can also simplify the design of the system and increase the chance of mission success.

The need to support adjustable autonomy in addition to high levels of autonomy raises many additional

design challenges. Major sources of complexity are that the human operators and the robotic agent have

di�culty predicting each other's state and intentions, and their activities may interfere. This is a major area

of ongoing research [Pell et al., 1998c, Bonasso et al., 1997b].

12



3.3 Robustness

In addition to supporting system-level fault protection, an executive must be internally robust in the face of

hardware and software faults. Each component must be sensitive to the limits of its own domain of expertise

and respond appropriately when these limits are reached. An example is that EXEC tracks the number of

times plan execution has failed, and when this count exceeds a threshold EXEC ceases to request new plans

and requests help from ground. Similarly, EXEC checks that the current state of the spacecraft is within

the competence of the planner before requesting a plan.

3.4 Tool Support

For each EXEC component, tools are needed for design, analysis, visualization, communication, and logging.

These tools are in various stages of development for di�erent EXEC components. We refer to some of them

here.

Simmons and Whelan (1997) has developed a plan execution visualizer (ExecView) compatible with our

plan execution system. ExecView enables users to view the plan as it was executed, scroll through the

history, and inspect individual activities to get explanations of constraints on these activities. An interesting

feature is that the system supports explanations of why an activity was unable to start before a certain time.

A visualization tool for resource management is currently under development.

Researchers in the Formal Methods group at NASA Ames have worked with us to formally validate

some of EXEC's capabilities. Formal analysis of models of the abstract resource management component of

EXEC [Gat and Pell, 1998] has established the correctness of some aspects of the system, and also located

implementation problems earlier in the process [Havelund et al., 1997, Penix et al., 1997, Lowry et al.,

1997]. We are planning to extend this work to validate the new resource management component and the

plan-runner.

An interesting issue in monitoring and logging behavior of execution systems is that observation overhead

can alter the behavior of such time-sensitive systems. We have developed a method for monitoring and logging

EXEC without signi�cant impact on the runtime behavior of EXEC. The monitoring task is run separately

at a relatively low priority. When a high priority task generates logging data, that information is passed in

raw form to a \logging" task that will only process the data when time and resources allow. An additional

complexity arises in missions with limited communication bandwidth. Such systems often need to support

dynamic prioritization of monitoring data.

3.5 Component Testing

Testing an autonomous system is a major challenge because of the wide range of activity it can demonstrate.

A problem with systems that carry out behavior over extended time (such as a plan-execution system running

a month-long plan) is that testing in real time can be prohibitively expensive. EXEC can scale its clock to

run at some fraction of real time and suspend time and resume it at a later date. An enhanced capability,

called warping, enables EXEC to recognize idle periods and jump directly to the time when a next planned

event is supposed to occur.

Formal methods have also been applied to some of EXEC's components in oder to verify their real-time

behavior and execution semantics. This has helped reduce some of the enormous e�ort associated with

traditional system validation.

Simulation is an important component of EXEC testing. To this end, models can be used which simulate

the behavior of the system which EXEC is controlling at an appropriate level of abstractions. Typically,

such simulations are encapsulated in a variety of scenarios which test various system and component level

EXEC capabilities and direct the focus of validation.

13



4 Related Work

In this section we discuss work on other execution systems and components.

EXEC is currently implemented on top of ESL [Gat, 1996], and a previous version was implemented in

RAPS [Firby, 1978]. These systems both provide languages to support multi-threaded task decomposition,

memory databases, and event-waiting and response mechanisms. RAPS provides a tighter level of struc-

turing, which simpli�es tracing and potentially generation of action networks from planners. However, ESL

provides better support for structured objects and language extension, both of which were crucial for our

large software engineering project. PRS [George� and Lansky, 1987] and RPL [McDermott, 1991] are similar

languages that support general execution and agent construction. Interrap [Muller and Pischel, 1994] and

Golog [Levesque et al., 1997] provide execution languages based on logic programming.

Unlike most other general execution systems, TCA [Simmons, 1990] explicitly supports an executive ser-

vices perspective. User-level procedures, which can be written in di�erent languages and run on distributed

platforms, can access centralized services (such as synchronization, simple resource management, and task

decomposition) through well-de�ned interfaces. While our previous approach was to build integrated exe-

cution systems which would explicitly coordinate external software components, we are now moving EXEC

to a services perspective as well. EXEC supports a higher-level set of individual capabilities than TCA,

Moreover, we are taking the services perspective one step further by providing the ability for each service to

be used in a stand-alone fashion and customized according to the needs of an application.

A number of systems have been developed that support speci�c executive capabilities described in this

paper. The attitude and articulation control subsystem (AACS) on the Cassini spacecraft [Brown et al., 1995,

Hackney et al., 1993] has explicit software modules for context-dependent command decomposition, resource

management, con�guration management, and fault protection. While these components are restricted to the

particular needs of the mission and the system has no support for closed-loop execution of exible plans,

these Cassini executive capabilities served as a baseline for those incorporated into EXEC.

CIRCA [Musliner et al., 1993] supports fault protection in the context of guaranteeing mission-critical

real-time behavior. CIRCA considers a set of states, actions, and critical failures to be avoided and constructs

a program consisting of a set of sense-act transitions which is then executed by a real-time controller. The

execution is guaranteed to avoid failure states.

The CONFIG system [Malin, 1997, Malin and Leifker, 1991], developed at NASA Johnson Space Center,

speci�cally supports goal-oriented activity de�nitions and con�guration management via declarative models.

The Livingstone system [Williams and Nayak, 1996] is also designed to function as a model-based manager

for discrete hardware con�gurations. Livingstone's modeling language is based on concurrent transition

diagrams. These provide an elegant representation of hardware devices, though the current system does not

treat time-delays within repair plans or support procedural event response de�nitions, as does EXEC.

Boddy (1996) describes a constraint-based distributed scheduling process for air tra�c control. Each

designated region of airspace is managed by a separate resource manager that allocates spatio-temporal

windows to pilots requesting the resource. Musliner and Boddy (1997) describe an application of similar

ideas to task distribution for distributed processing. These agents support a similar capability to the modular

resource manager we are developing.

Several systems have been developed to support closed-loop plan execution. In contrast with EXEC's

current plan execution component, the approach taken in 3T [Bonasso et al., 1997a] has the planner watch

over each step of execution. Hence the planner itself serves as an integral participant in the plan execution

capability. Bresina et al. (1996) describes APA, which has separate components for generation and execution

of temporal plans. However, their approach is currently restricted to single resource domains with no

concurrency. Reece and Tate (1994) developed an execution agent for the O-Plan [Currie and Tate, 1991]

planning system. The combined system supports a plan repair mechanism [Drabble et al., 1996] that is

more sophisticated than that supported by EXEC at present, as it allows the planner to edit any unexecuted

portion of the currently executing plan. Our redesigned plan execution component will support a similar

editing capability, based on the work in O-Plan and also in Cypress [Wilkins et al., 1995]. Finally, Lockheed's

Tactical Planning and Execution System (TPES) [Mitchell, 1997] is an interesting related system that

14



supports many execution and replanning capabilities with a high level of human interaction.

5 Summary and Future Work

The Remote Agent Executive demonstrates the capabilities necessary to autonomously control a complex

software system. In particular, it supports exible plan execution, resource management, con�guration

management, a high-level action-de�nition language, and system-level fault protection.

In developing EXEC, we have found a number of properties that are desirable for all of the components

of an executive. These properties include modular design, adjustable autonomy, robustness, tools for design,

analysis, and visualization, and support for testing.

Our current e�orts are focused on decomposing EXEC into separate components, as well as enhancing

each component. The e�ort to separate out component capabilities is starting with the resource manager,

to which is being added the ability to handle resources as continuous quantities and resource reservations.

Other component capabilities will be separated out as their roles and relationships become clari�ed and as

applications require.

Our future e�orts involve extending the capabilities of the execution agents in a number of directions to

support new kinds of missions, increased reliability, and increased resource utilization. These e�orts revolve

around support for more exible representations, distributing execution capabilities, coordination among

multiple agents, and improvements in development and veri�cation tools.

Other key directions include increased real-time performance and exploiting the structure of plans to

gracefully degrade objectives in the face of failures without aborting the current plans.

6 Acknowledgments

We gratefully acknowledge the contributions of other members of the DS-1 Remote agent team who inuenced

the design of EXEC: Abdullah Aljabri, Doug Bernard, Ed Gamble, Erann Gat, Ron Keesing, Sandy Krasner,

and Reid Simmons.

References

[AAAI, 1997] AAAI. Proceedings of the Fourteenth National Conference on Arti�cial Intelligence, Cambridge, Mass.,

1997. AAAI Press.

[Aljabri et al., 1998] A. Aljabri, D. Bernard, D. Dvorak, B. Pell, and T. Starbird. Infusion of autonomy technology

into deep space missions: Lessons learned. In IEEE [1998]. To Appear.

[Bernard et al., 1998] D. Bernard, G. A. Dorais, C. Fry, E. B. Gamble Jr., B. Kanefsky, J. Kurien, W. Millar,

N. Muscettola, P. P. Nayak, B. Pell, K. Rajan, N. Rouquette, B. Smith, and B. C. Williams. Design of the remote

agent experiment for spacecraft autonomy. In IEEE [1998]. To Appear.

[Boddy, 1996] Mark S. Boddy. Contract-based distributed scheduling for a next generation air tra�c management

system. Technical report, Honeywell Technology Center, 1996.

[Bonasso et al., 1997a] R. P. Bonasso, D. Kortenkamp, D. Miller, and M. Slack. Experiences with an architecture

for intelligent, reactive agents. Journal of Experimental and Theoretical AI, 9(1), 1997.

[Bonasso et al., 1997b] R. P. Bonasso, D. Kortenkamp, and T. Whitney. Using a robot control architecture to

automate space station shuttle operations. In AAAI [1997].

[Bresina et al., 1996] John Bresina, Will Edgington, Keith Swanson, and Mark Drummond. Operational closed-loop

observation scheduling and execution. In Pryor [1996].

[Brown et al., 1995] G.M. Brown, D.E. Bernard, and R.D. Rasmussen. Attitude and articulation control for the

cassini spacecraft: A fault tolerance overview. In 14th AIAA/IEEE Digital Avionics Systems Conference, Cam-

bridge, MA, November 1995.

[Currie and Tate, 1991] K. Currie and A. Tate. O-Plan: the open planning architecture. Art. Int., 52(1):49{86, 1991.

15



[Drabble et al., 1996] Brian Drabble, Austin Tate, and Je� Dalton. O-plan project evaluation experiments and

results. O-Plan Technical Report ARPA-RL/O-Plan/TR/23 Version 1, AIAI, July 1996.

[Firby, 1978] R. James Firby. Adaptive execution in complex dynamic worlds. PhD thesis, Yale University, 1978.

[Gat and Pell, 1998] Erann Gat and Barney Pell. Abstract resource management in an unconstrained plan execution

system. In IEEE [1998]. To Appear.

[Gat, 1996] Erann Gat. ESL: A language for supporting robust plan execution in embedded autonomous agents. In

Pryor [1996].

[George� and Lansky, 1987] Michael P. George� and Amy L. Lansky. Procedural knowledge. Technical Report 411,

Arti�cial Intelligence Center, SRI International, January 1987.

[Hackney et al., 1993] J. Hackney, D.E. Bernard, and R.D. Rasmussen. The cassini spacecraft: Object oriented ight

control software. In 1993 Guidance and Control Conference, Keystone, CO, 1993.

[Havelund et al., 1997] Klaus Havelund, Michael Lowry, and John Penix. Formal analysis of a spacecraft controller

using SPIN. Technical report, NASA Ames Research Center, 1997. In preparation.

[IEEE, 1998] IEEE. Proceedings of the IEEE Aerospace Conference, Snowmass, CO, 1998. To Appear.

[Levesque et al., 1997] H.J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. Golog: A logic programming

language for dynamic domains. Journal of Logic Programming, 31:59{84, 1997.

[Lowry et al., 1997] M. Lowry, K. Havelund, and J. Penix. Veri�cation and validation of AI systems that control

deep-space spacecraft. In Proc. ISMIS'97, 1997.

[Malin and Leifker, 1991] J. T. Malin and D. B. Leifker. Functional modeling with goal-oriented activities for analysis

of e�ects of failures on functions and operations. Informatics & Telematics, 8(4):353{364, 1991.

[Malin, 1997] Jane T. Malin. Statement of interest: Designing model-based autonomous systems for coordinated

acquisition and maintenance of models and procedures. In P. Pandurang Nayak and B. C. Williams, editors,

Procs. of the AAAI Fall Symposium on Model-Directed Autonomous Systems. AAAI Press, 1997.

[McDermott, 1991] D. McDermott. A reactive plan language. Technical report, Computer Science Dept, Yale Uni-

versity, 1991.

[Mitchell, 1997] Steven W. Mitchell. A hybrid architecture for real-time mixed-initiative planning and control. In

AAAI [1997], pages 1032{1037.

[Muller and Pischel, 1994] J. Muller and M. Pischel. An architecture for dynamically interacting agents. International

Journal of Intelligent and Cooperative Information Systems (IJICIS), 3(1):25{45, 1994.

[Muscettola et al., 1995] Nicola Muscettola, Barney Pell, Othar Hansson, and Sunil Mohan. Automating mission

scheduling for space-based observatories. In G.W. Henry and J.A. Eaton, editors, Robotic Telescopes: Current

Capabilities, Present Developments, and Future Prospects for Automated Astronomy, number 79 in ASP Conf.

Series. Astronomical Society of the Paci�c, Provo, UT, 1995.

[Muscettola et al., 1998a] Nicola Muscettola, Paul Morris, Barney Pell, and Ben Smith. Issues in temporal reasoning

for autonomous control systems. In Wooldridge [1998]. To appear.

[Muscettola et al., 1998b] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C. Williams. Remote

agent: To boldly go where no AI system has gone before. Arti�cial Intelligence, 103(1/2), August 1998. To

Appear.

[Musliner and Boddy, 1997] David Musliner and Mark S. Boddy. Contract-based distributed scheduling for dis-

tributed processing. In Working Notes of the AAAI Workshop on Constraints and Agents, Providence, RI, July

1997.

[Musliner et al., 1993] David Musliner, Ed Durfee, and Kang Shin. Circa: A cooperative, intelligent, real-time control

architecture. IEEE Transactions on Systems, Man, and Cybernetics, 23(6), 1993.

[Pell et al., 1997] Barney Pell, Erann Gat, Ron Keesing, Nicola Muscettola, and Ben Smith. Robust periodic planning

and execution for autonomous spacecraft. In Procs. of IJCAI-97, Los Altos, CA, 1997. IJCAI, Morgan Kaufmann.

[Pell et al., 1998a] Barney Pell, Douglas E. Bernard, Steve A. Chien, Erann Gat, Nicola Muscettola, P. Pandurang

Nayak, Michael D. Wagner, and Brian C. Williams. An autonomous spacecraft agent prototype. Autonomous

Robotics, 5(1), March 1998. To Appear.

16



[Pell et al., 1998b] Barney Pell, Ed Gamble, Erann Gat, Ron Keesing, Jim Kurien, Bill Millar, P. Pandurang Nayak,

Christian Plaunt, and Brian Williams. A hybrid procedural/deductive executive for autonomous spacecraft. In

Wooldridge [1998]. To appear.

[Pell et al., 1998c] Barney Pell, Scott Sawyer, Douglas E. Bernard, Nicola Muscettola, and Ben Smith. Mission

operations with an autonomous agent. In IEEE [1998]. To Appear.

[Penix et al., 1997] John Penix, Perry Alexander, and Klaus Havelund. Declarative speci�cation of software architec-

tures. In Michael Lowry, editor, Proceedings of the International Conference on Automated Software Engineering.

IEEE Computer Society Press, November 1997.

[Pryor, 1996] Louise Pryor, editor. Proceedings of the AAAI Fall Symposium on Plan Execution. AAAI Press, 1996.

[Reece and Tate, 1994] Glen Reece and Austin Tate. Synthesizing protection monitors from causal structure. In

Procs. AIPS-94. AAAI Press, 1994.

[Simmons and Whelan, 1997] Reid Simmons and Greg Whelan. Visualization tools for validating software of au-

tonomous spacecraft. In David Atkinson, editor, Proceedings of the Fourth International Symposium on Arti�cial

Intelligence, Robotics, and Automation for Space (i-SAIRAS), Tokyo, Japan, August 1997. Jet Propulsion Labo-

ratory.

[Simmons, 1990] Reid Simmons. An architecture for coordinating planning, sensing, and action. In Procs. DARPA

Workshop on Innovative Approaches to Planning, Scheduling and Control, pages 292{297, San Mateo, CA, 1990.

DARPA, Morgan Kaufmann.

[Wilkins et al., 1995] D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wesley. Planning and reacting in

uncertain and dynamic environments. Journal of Experimental and Theoretical AI, 7(1):197{227, 1995.

[Williams and Nayak, 1996] Brian C. Williams and P. Pandurang Nayak. A model-based approach to reactive self-

con�guring systems. In Procs. of AAAI-96, pages 971{978, Cambridge, Mass., 1996. AAAI, AAAI Press.

[Wooldridge, 1998] M. Wooldridge, editor. Proceedings of the Second International Conference on Autonomous

Agents. ACM Press, 1998. To appear.

17


